Краска с функцией солнечных батарей

Солнечная краска — «зеленое» электричество в каждый дом

Создано 18.06.

2011 09:03Автор: NataKonПриходило ли вам когда-нибудь в голову, что неисчерпаемый, как само солнце, источник энергии можно будет хранить в баллончике и при необходимости наносить на любую мало-мальски подходящую поверхность? Меж тем так называемые «напыляемые» солнечные элементы уже существуют и продолжают активно совершенствоваться! Инженер-химик Брайан Коргел из Техасского Университета в Остине (США) уверен, что «солнечные панели скоро можно будет рисовать на стенах и крышах зданий красками из наночастиц». По его словам, процесс использования новой нано-краски сможет вскоре заменить стандартный (относительно дорогой) высокотемпературный метод изготовления солнечных панелей.

Напыляемые солнечные элементы – “почти газетная” печать от специалистов Техасского Университета

«На данный момент наша исследовательская группа занимается изготовлением нанокристаллов.

Мы берем элементы группы 'CIGS' – медь, индий, галлий, селенид – и формируем из этих неорганических [светопоглощающих] материалов мелкие частицы, которые затем помещаются в растворитель, создавая таким образом чернила или краску», — поясняет Коргел.

Эта солнечная «краска» выполняет те же функции, что и громоздкие фотогальванические солнечные коллекторы на крышах зданий и на «солнечных фермах» по всему миру. Крошечные коллекторы Коргел называет «солнечными бутербродами», верхняя и нижняя части которых представлены металлическими контактами, а середина – светопоглощающим слоем.

«Солнечная краска» может распыляться на пластиковые, стеклянные и тканевые поверхности, превращая их в солнечные элементы. Процесс этот чем-то напоминает газетную печать.

Подложка может быть слегка гибкой (к примеру, представлять собой ровный лист пластика, металлической фольги или даже лист бумаги).

Обратите внимание

Толщина слоя используемых в краске CIGS наночастиц, к слову, в 10000 раз меньше человеческого волоса.

Отдельные элементы могут собираться в солнечные панели (согласно NREL — по 40 элементов на одну панель), обеспечивая электричеством жилые дома и промышленные предприятия.

Единственное «но» заключается в том, что для рентабельности промышленного изготовления «краски» эффективность преобразования солнечного света должна составить 10%.

Пока что это значение не превышает 3%, но исследователи надеются, что им удастся повысить его до необходимого уровня.

Напыляемые солнечные элементы – «зеленое» электричество для микроскопических устройств

Исследователи Университета Южной Флориды разработали столь крошечные солнечные элементы, что их можно просто распылять на стены, крыши и любые другие освещаемые солнцем поверхности. Эти элементы способны питать только очень мелкие устройства, так как их размеры не превышают 1мм в длину.

Органические полимеры, используемые вместо кремния, позволили д-ру Цзян Сяомэй создать легкорастворимые фотоэлементы, которые могут наноситься на любой приспособленный для этого материал.

Комплекс из 20 таких элементов производит электроэнергию напряжением 8 вольт, которую исследователи использовали для работы датчиков из нанотрубок, предназначенных для обнаружения опасных химикатов.

Кроме того, американская компания New Energy Technologies недавно представила протестированную Университетом Южной Флориды разработку «Солнечных окон» (“SolarWindow”).

Важно

Эта напыленная на стеклянную поверхность солнечная панель, по утверждению разработчиков, способна производить электроэнергию даже из искусственного света внутри помещений.

Для ее создания использовались все те же крошечные солнечные элементы, разработанные Цзян Сяомэй.

Завод по производству напыляемых солнечных элементов в Австралии

Исследователи Австралийского национального университета совместно с представителями компаний Spark Solar Australia и Braggone Oy работают над трехлетним проектом по разработке дешевых и высокоэффективных напыляемых солнечных панелей.

Традиционно фотоэлементы изготавливаются из кремния, покрытого тонким противоотражающим слоем нитрата кремния. Дороговизна их производства объясняется, в частности, необходимостью проведения процесса в условиях вакуума.

Новый метод использует напыляемую водородную пленку и напыляемую же противоотражающую пленку (вакуум при этом не нужен). Солнечные элементы проходят через конвейер, где и происходит напыление пленок.

Этот упрощенный метод позволит средних размеров заводу сэкономить на капитальном оборудовании до $ 5 млн., т.е. выпускаемые солнечные панели окажутся в итоге намного более дешевыми.

Основанный Spark Solar «солнечный» завод станет самым крупным поставщиком солнечных элементов в Южном полушарии. Будущее месторасположение его все еще уточняется (рассматриваются варианты Аделаиды, Джилонга, Воллонгонга, Квенбейана, и Канберры).

Первые солнечные элементы были выпущены уже в конце 2010 года, в целом же предполагаемый годичный объем производимой продукции составит более 10 миллионов фотоэлементов, при этом доходы от экспорта ожидаются на уровне 135 млн.

австралийских долларов в год.

Напыляемые солнечные элементы – новые возможности для окон эко-домов

Совет

Норвежская компания EnSol AS совместно с командой ученых Лестерского университета разработала запатентованную конструкцию солнечного элемента, в которой используются металлические частицы диаметром около 10 нанометров.

Это свое изобретение ученые планируют использовать для превращения в солнечные электрогенераторы самолетов и зданий (в том числе окон).

Наносить «краску» из новых тонкопленочных фотоэлементов можно будет на любую плоскую поверхность.

Предлагаемая технология была опробована, но все еще дорабатывается. Прежде чем выпустить ее на рынок в к 2016 году, разработчики надеются повысить эффективность изобретения до 20%. Так или иначе, покрытый тонкой прозрачной пленкой фотоэлементов материал от EnSol уже показал себя лучше, чем многие из существующих и параллельно разрабатываемых конкурентами технологий.

Итак, подводя итоги

Тот факт, что «солнечный» материал может использоваться в виде напыляемой краски, существенно расширяет возможности создания «мобильного» электричества.

Небо, затянутое тучами, работе «солнечной краске» не помеха, так как напыляемые фотоэлементы способны улавливать не только ультрафиолет, но и инфракрасное солнечное излучение.

Покрытие транспортного средства подобным материалом сможет, теоретически, обеспечить постоянную подзарядку батарей.

Еще больше электроэнергии будет вырабатываться при нанесении его на поверхность крыш и/или окон. Кроме того, подобные солнечные элементы будут лучше выдерживать непогоду, чем большинство нынешних хрупких солнечных коллекторов.

Однако

Поскольку эффективность фотоэлементов зависит от степени поглощения солнечного света, пользователям придется периодически очищать «покрашенные» солнечной «краской» стены и крыши. Работы Австралийского национального университета, касающиеся возможности использования напяемых солнечных панелей в помещении, продолжаются, завершение их запланировано на конец 2011 года.

Остается открытым вопрос эффективности затрат (исследования в данном направлении стоят недешево).

Обратите внимание

И наконец, последнее ограничение связано с сырьем – комбинация медь-индий-галлий-селенид стоит дорого и не является широкодоступной.

Так или иначе, у исследователей остается широкое поле для исследований и экспериментов. А у нас – надежда увидеть и приобрести когда-нибудь кажущуюся пока невероятной «солнечную краску».

Источник: /FacePla.net/the-news/energy-news-mnu/1408-solar-paint.html

Солнечные батареи нового поколения — полный обзор видов. Жми!

20 лет назад электричество, добытое из солнечной энергии, казалось нам просто фантастикой. Но уже сегодня солнечными батареями уже никого не удивишь.

Жители стран Европы давно поняли все преимущества солнечной энергии, и теперь освещают улицы, обогревают дома, заряжают различные приборы и т.д. В этом обзоре речь пойдет солнечных батареях нового поколения, созданных для облегчения нашей жизни и сохранения окружающей среды.

Типы СБ

Принцип работы солнечной батареи. (Для увеличения нажмите)Сегодня насчитывается более десяти видов солнечных устройств, которые используются в той или иной отрасли.

Каждый вид имеет свои характеристики и эксплуатационные особенности.

Принцип работы кремниевых солнечных батарей: на кремниевую (кремниево-водородную) панель попадает солнечный свет.

В свою очередь, материал пластины изменяет направление орбит электронов, после чего преобразователи дают электрический ток.

Эти устройства можно условно поделить на четыре вида. Ниже рассмотрим их подробнее.

Монокристаллические пластины

Монокристаллическая СБОтличие этих преобразователей в том, что светочувствительные ячейки направлены только в одну сторону.

Это дает возможность получать самый высокий КПД — до 26%. Но при этом панель должна все время быть направлена на источник света (Солнце), иначе мощность отдачи существенно снижается.

Другими словами, такая панель хороша только в солнечную погоду. Вечером и в пасмурный день такой вид панелей дает немного энергии. Такая батарея станет оптимальной для южных районов нашей страны.

Поликристаллические солнечные панели

Поликристаллическая СБПластины солнечных панелей содержат кристаллы кремния, которые направлены в разные стороны, что дает относительно низкий КПД (16-18%).

Однако главным преимуществом этого вида солнечных панелей — в отличной эффективности при плохом и рассеянном свете. Такая батарея все равно будет питать аккумуляторы в пасмурную погоду.

Аморфные панели

Аморфная СБАморфные пластины получают путем напыления кремния и примесей в вакууме. Слой кремния наносится на прочный слой специальной фольги. КПД подобных устройств достаточно низкий, не более 8-9%.

Низкая «отдача» объясняется тем, что под действием солнечных лучей тонкий слой кремния выгорает.

Практика показывает, что после двух-трех месяцев активной эксплуатации аморфной солнечной панели эффективность падает на 12-16%, в зависимости от производителя. Срок службы таких панелей не более трех лет.

Преимущество их в низкой стоимости и возможности преобразовывать энергию даже в дождливую погоду и туман.

Гибридные солнечные панели

Гибридные СБОсобенность таких блоков в том, что в них объединены аморфный кремний и монокристаллы. По параметрам панели похожи на поликристаллические аналоги.

Особенность таких преобразователей в лучшем преобразовании солнечной энергии в условиях рассеянного света.

Полимерные батареи

Полимерная СБМногие пользователи считают, что это перспективная альтернатива сегодняшним панелям из кремния. Это пленка, состоящая из полимерного напыления, алюминиевых проводников и защитного слоя.

Особенность ее в том, что она легкая, удобно гнется, скручивается и не ломается.

КПД такой батареи составляет всего 4-6%, однако низкая стоимость и удобное использование делает такой вид солнечной батареи очень популярной.

Совет специалистов: чтобы сэкономить время, нервы и деньги, покупайте солнечное оборудование в специализированных магазинах и на проверенных сайтах.

С каждым днем технологии стремительно развиваются, и производство солнечных моделей не стоит на месте. Предлагаем ознакомиться с последними новинками на рынке солнечных систем.

Солнечная черепица

Солнечная черепицаДабы не испортить эстетику кровли дома и при этом получать бесплатную энергию солнца, можно рассмотреть вариант с покупкой солнечной черепицы.

Читайте также:  Как открыть стоматологический кабинет: бизнес-план + советы

Этот отделочный материал состоит из достаточно прочного корпуса и встроенных фотоэлементов.

Кровельное покрытие вырабатывает достаточно энергии, которую можно использовать в бытовых условиях.

При использовании такого материала-оборудования можно питать отдельно выделенную электросеть или сбрасывать электроэнергию в общую сеть.

В любом случае общие затраты на электроэнергию снижаются.

Лидером по производству солнечной черепицы является компания из России — «Инноватикс». Вот уже более десяти лет она продает высококачественные отделочные материалы со встроенными фотоэлементами.

Интересно, что такую черепицу тяжело отличить от обычного кровельного материала даже при близком расстоянии.

Преимущества солнечной черепицы:

Солнечное окно

Солнечное окноБуквально три года назад на рынке солнечных технологий появилась новая разработка американских конструкторов из «Pythagorus Solar Windows».

Суть инновации в том, чтобы использовать оконное стекло в качестве панели, добывающей солнечную энергию.

Подобные панели по полной используют в высотках европейских городов.

Это позволяет существенно экономить электроэнергию.

Технология солнечных окон представляет собой использование фотоэлементов в виде кремниевых полос, встроенных между стеклами. Помимо того, что окна будут вырабатывать дополнительную электроэнергию, в дополнение окно будет защищать комнату от перегрева, задерживая солнечный свет. Внешне солнечные окна похожи на привычные жалюзи.

Другой производитель солнечных окон «Solaris Plus» предлагает использовать специальные стекла, обработанные специальным кремниевым напылением. Полосы будут преобразовывать солнечные лучи в электроэнергию, которая будет питать АКБ через полупрозрачные проводники.

Гибридные фотоэлементы

В 2015 году американскими конструкторами были разработаны гибридные фотоэлементы, позволяющие преобразовывать электроэнергию не только из солнечного света, но и тепла. Суть конструкции заключается в применении фотоэлементов из кремния и полимерной пленки «PEDOT».

Фотоэлемент фиксируется с пироэлектрической пленкой и соединяется с термоэлектрическим оборудованием, способным преобразовывать тепло в электрический ток.

Тестирование новой гибридной технологии показало, что новая термическая пленка способна вырабатывать в 10 раз больше электроэнергии, чем стандартная солнечная панель.

Системы на основе биологической энергии

Исследования, проводимые специалистами из университета Кембриджа, пока не дали конкретных результатов в области разработки солнечных систем нового поколения, преобразовывающих биологическую энергию (фотосинтез). Последние результаты показали КПД менее 0.4 %.

Но разработки не останавливаются, а ученые обещают, что в ближайшем будущем получать энергию от биологических солнечных систем.

Варианты таких батарей впечатляют:

  1. Лампа дневного света, работающая от обычного лесного мха.
  2. Электростанции в виде больших листьев.
  3. Панели из растений для домашнего пользования.
  4. Мачты из растений, из которых будут добывать электроэнергию и многое другое.

Надеемся на то, что в скором будущем гелиосистемы нового поколения будут использоваться по максимуму. Это даст возможность обеспечить электроэнергией каждый дом на планете, без вреда для окружающей среды.

Смотрите видео, в котором рассказывается о солнечных батареях нового поколения:

Источник: /teplo.guru/eko/solnechnyie-batarei-novogo-pokoleniya.html

Селективное покрытие для солнечного коллектора

Речь в этой статье пойдёт не столько о самом коллекторе, как о селективном покрытии для солнечного коллектора. Что это вообще такое, зачем применяется и как сделать своими руками селективное нанесение.

Для чего применяется селективное покрытие?

Слой такого типа в солнечных батареях является едва ли не самым важным элементом в системе. Смысл в том, чтобы поглощать как можно больше солнечного света, излучения.

Такое покрытие не только притягивает полный спектр освещения, но и превращает в тепло и помогает делать это более эффективно.

Важно

Название селективного покрытия происходит из того смысла, что правильный состав напыления или нанесения, позволяет накапливать и поглощать тепло, прямо как это делают в солнечной панели специальные диоды.

Как правило, химикат для нанесения селективного покрытия купить можно плюс-минус за 1$ на один квадратный метр. в общем-то такую процедуру увеличения КПД солнечного коллектора можно проделать самому, своими руками. Но важно знать как. Если правильно подойти к делу, можно не только сэкономить средства, но и добиться большего толка от вашей системы нагрева теплоносителя.

Селективное покрытия для солнечного коллектора — как сделать своими руками?

Во-первых давайте разберёмся что такое коэффициент селективности. По сути это соотношение поглощённой энергии и отданной энергии солнца. Именно этот показатель важен при выборе готовой продукции для нанесения селективного покрытия. Что можно выбрать в качестве такого покрытия:

  • Готовый специальный химикат, который продаётся в соответствующих магазинах
  • Оксиды различных металлов
  • Специальный утеплительный тонкий материал
  • Можно просто покрасить принимающую поверхность чёрной краской(матовой) или накрыть чёрной плёнкой или просто использовать газовую сажу. Но толку от такого нанесения будет в разы меньше, чем от специального напыления
  • Также есть специальная селективная краска для солнечных коллекторов
  • Специальное селективное покрытие с антиконвекционным эффектом. Такое нанесение уменьшает конвективную теплоотдачу. Для того чтобы покрытие подобного типа работало на максимум, необходимо подготовить поверхность, отполировать её и выготовить таким образом, чтобы она хорошо отражала солнечные лучи.

Как бы там ни было, при выборе материала покрытия необходимо учитывать коэффициент селективности: от 8,5 до 16. Селективное покрытие для солнечных коллекторов обладает и другими параметрами, но этот один из самых важных.

Источник: /solnpanels.com/selektivnoe-pokrytie-dlya-solnechnogo-kollektora/

Солнечные батареи-электростанции (комплекты)

Показать: 

Показать: 

Вы можете выбрать и купить по низкой стоимости комплект батарей солнечных для дома в Симферополе в интернет-магазине «Солнечные батареи». Простая и удобная система оплаты товаров и своевременная доставка делают процесс покупки лёгким и приятным, а наши грамотные консультанты всегда будут рады предоставить информацию по возникающим вопросам.

То, что ещё несколько лет назад казалось невообразимым, теперь реально — снабжать свое жилье электрической энергией можно при помощи энергии солнца. Панели, которые могут получать электроэнергию из света, производились и раньше, но не были доступны из-за малых объемов выпуска и высокой стоимости.

Последние несколько лет изысканий в обозначенной области позволили так удешевить и упростить производство подобных приборов, что они уже могут соперничать с прочими способам энергодобычи. Стоимость (цена) комплекта батарей солнечных для частных домов в наш век по карману обладателям жилья.

Благодаря прогрессу, сегодня каждый желающий может выбрать и купить на нашем web-сайте комплект солнечных батарей-электростанций для частных домов по приемлемым ценам.

Данная категория товара пользуется растущей популярностью, так как у них есть несколько исключительных плюсов:

  • Практичность и простота использования. Обычно такие установки крепятся на крышу дома с южной стороны (или в другое подходящее место). Они могут вырабатывать электрический ток не только под воздействием интенсивных световых лучей, но и в пасмурные, прохладные дни. Конечно, тогда результативность их будет несколько ниже, но всё же вполне достаточной. Производить их мытьё или чистку советуют только раз в год, они практически не требуют дополнительного обслуживания.
  • Энергоавтономность. Это прекрасное решение для загородных дач или домов, где не всегда бывает возможность воспользоваться энергией электролиний. Помимо того, Вы можете прекратить следить за растущими ценами на электричество, ведь у Вас будет свой энергоисточник. Стоимость комплекта батарей солнечных для дачи и дома полностью окупается в течение нескольких лет, а значит, это приобретение является весьма выгодной инвестицией.
  • Безопасность для природной среды. Они не производят токсичных отходов, и поэтому совершенно безопасны для экологии.

Заявленная стоимость комплекта батарей-электростанций солнечных для дач или частных домов напрямую зависит от их мощности, то есть от того, как много электроэнергии Вы рассчитывали бы получить с неё. Здесь Вы сможете приобрести и бюджетные типы батарей малой силы для домов с низким энергопотреблением, и совершенно автономные энергосистемы.

Например, в представленном online-каталоге возможно купить солнечные батареи-электростанции для частного дома или дачи 5 или 10 кВт по низким ценам, такие системы смогут обеспечить Вас электроэнергией полностью.

Высокая стоимость комплектов батарей-электростанций солнечных 5 кВт для дома целиком и полностью окупается уже по прошествии нескольких лет.

Источник: /simferopol.sol-batery.ru/solnechnye-batarei/

Селективное покрытие своими руками для солнечного коллектора

Самодельный солнечный коллектор это едва-ли не самая интересная тема в контексте энергоэффективного дома. Для изготовления солнечного коллектора не требуется высокотехнологичного производства и если разобраться в теории и не бояться практики — можно обеспечить семью горячей водой, подогретой солнцем.

Изготовление коллектора проходит в несколько этапов, один из которых — выбор и нанесение селективного покрытия на поглощающие панели (абсорберы). Отмечу, что затраты на селективное покрытие незначительно увеличивают общую стоимость проекта, но играют важную роль.

Абсорберу (поглощающей панели) нужно покрытие, которое будет эффективным теплоприемником, прозрачно для инфракрасного излучения.

На какие характеристики селективных покрытий нужно ориентироваться?

Мерилом эффективности селективного покрытия является:

  • Коэффициент поглощения солнечной энергии(α)
  • Относительная излучающая способность (ε)
  • Отношение способности поглощения к излучению

Начнем с самого простого и доступного селективного покрытия: краски.

Селективная краска

Обычные черные краски не годятся, так как являются теплоизоляторами и не обладают термостойкостью. Матовая автокраска не обладает необходимой термостойкостью, хотя светопоглощение у них хорошее (в испытаниях дают 65-70°С при 70-80°С у коллектора с покрытием тонером по лаку).

Лаки, посыпанные тонером для лазерных принтеров, дают правильное покрытие с точки зрения матовой поверхности, но так же плохо проводят тепло. Смешивать лак и тех. углерод — идея еще хуже, так как получается очень толстый слой покрытия с глянцем. Нам нужно добиться толщины селективного покрытия в несколько микрон.

Подходят аэрозольные и баночные термостойкие матовые краски для мангалов, печей, каминов черного цвета. Под некоторые краски требуется нанесение специального антикоррозийного грунта, кислотного грунта.

Совет

Есть подходящие краски не в форме аэрозоля, но которые можно наносить краскопультом. Напоминаю, толщина слоя очень важна для эффективности селективного покрытия.

Читайте также:  Производство мотоблоков: оборудование + технология изготовления 2020

Нашел в продаже специализированные краски для солнечных коллекторов с заявленными 99% поглощения.

Готовая селективная пленка или металлическая лента

Селективными пленками пользуются мелкие производители коллекторов. Это термопленки для наклеивания на абсорбер или рулонная медь/алюминий с готовым селективным покрытием, нанесенным в условиях вакуума. Достать такой материал в розницу сложно.

Селективное покрытие на алюминий

Идеального тонкого покрытия графитового цвета на алюминии добиваются тем же методом, что и с оцинковкой — чернение купоросом/хлоридом натрия. Это спорный вариант самодельного селективного слоя, так как истончает металл.

Промышленные доступные абсорберы в основном алюминиевые, толщиной 0,2 мм, крашеные матовой термокраской.

Учитывая это, мудрить с чернением алюминия всяким хлорным железом и анодированием не имеет смысла в масштабах самодельного солнечного коллектора.

Наиболее быстро окупаемым в самоделках является именно крашеный алюминий, который уступает в теплоотдаче и только черненой меди. Но у алюминиевого абсорбера есть свои недостатки.

Селективное покрытие на медный абсорбер

Перед оксидированием медную поверхность нужно тщательно очистить кислотой (горячий уксус, лимонная кислота, сульфаминовая кислота). Шкурить перед чернением щетками по металлу или какими-либо абразивами не дает никаких преимуществ в абсорбции энергии в дальнейшем.

Очистить медь можно солью/содой по чайной ложке на 100 г. воды.

Прочную оксидную пленку можно получить температурой красного каления — 1200°С с последующим охлаждением. Делать такое оксидирование нужно до момента спайки. В домашних «каминных» условиях такое не провернуть, нужно нести медь к кузнецу.

Оксидирование меди серной мазью дает рыхлое неустойчивое селективное покрытие.
Естественная окись меди имеет поглощающую способность в четыре раза большую, чем у термостойкой краски: 75% поглощения, 33% эмиссии, что дает 42% эффективности.

Чернение меди делают также  электролитическим способом, рецепты и технологический процесс есть в сети.

Обратите внимание

Жидкости для воронения (чернения) хорошо работают, но дорогие. Протравки можно делать самостоятельно, рецепты есть по этой ссылке. Хочу отдельно остановиться на паре способов. В способе с серной печенью — оксид меди в составе полученного покрытия может быть в меньшей концентрации, чем сульфид меди, а это может влиять на селективную способность покрытия, но я не химик и не уверен.

Промышленный метод оксидирования меди с помощью едкого натра опасен для здоровья, не применяйте его в гаражных условиях. Вместо NaOH+NaClO2 пользуются содой, которая в промышленных масштабах неудобна и дорога для чернения меди.

Хотя образцы, черненные NaOH показывают лучший результат (подробнее о тестах самодельных селективных покрытий на меди и алюминии здесь) чернение содой — процесс медленный, на глубокий черный цвет уходит около 2-х суток в растворе без подогрева. Концентрация раствора: 2 чайные ложки на 100 грамм воды.

Формирование оксида проходит медленно, поэтому нужный оттенок и равномерность получить гораздо проще таким методом. Раствор нужно периодически помешивать а детали переворачивать.

Солнечный свет ускоряет процесс оксидирования меди. Толщина покрытия в несколько микрон, что нам и нужно. Очень стабильное, не смывается и не сцарапывается.

Встречал советы с парами аммиака (нашатырного спирта), якобы приводят к быстрому потемнению меди в закрытой емкости. Однако это скорее патинирование, придающее меди синеву, нестойкое покрытие.

Прожиг меди газовой горелкой дает на 10-12°С меньше селективности, чем оксидирование химическими способами.

Важно

Для коллектора лучше выбрать медь. Простая пайка, долговечность работы даже при утрате селективного покрытия (с алюминием все в разы сложнее), хотя медь и получится раза в 4 дороже алюминия.

Термокраска на медь тоже наносится, но раз уж вы теперь знаете, как ее оксидировать, то браться за покраску точно не стоит.

Селективное покрытие на оцинковку

Химическое меднение (и последующее оксидирование) оцинковки можно провести в гаражных условиях с помощью пентагидрата сульфата меди (медного купороса).

Химическое чернение раствором медного купороса и натриевой соли соляной кислоты (хлорид натрия) получается не стойким. Чернить оцинковку лучше готовым промышленным чернителем, с которым можно работать без гальваники холодным способом, он создает на поверхности прочную оксидную хроматную пленку. Оксидный слой поглощает максимум излучения в пасмурный день.

Вариант нанесения на оцинковку порошковой краски для лазерных принтеров (технического углерода) не менее популярен. Пластины оцинковки прогреваются строительным феном и посыпаются тонером.

Слой краски получается тонким, матовым, прочным — порошок приплавляется к металлу сам. Если пластина слишком горячая и порошок оплавился — обрабатывают мелкозернистой наждачной бумагой.

В солнечную погоду такое селективное покрытие более чем эффективно.

Другие технологии селективных покрытий:

  • Гофрированная селективная поверхность
  • Углеродный войлок
  • Селективное бархатное (флок) покрытие, нанесенное плазмой

Несколько обобщающих моментов о селективных поглощающих покрытиях:

  1. Коллекторы для сезонного пользования прекрасно греют воду с любым самодельным селективным покрытием.
  2. Абсорбер с матовым черным покрытием и двумя стеклами поверх имеет примерно те же температуры, что и теплоприемник с селективной краской и одним стеклом.
  3. Чернение меди гораздо долговечнее красок, а стоимость оксидирования не дороже покрытия термостойкой краской. Красить медь не стоит.
  4. Быстрее всех окупается крашеный алюминиевый абсорбер.

Книги по солнечным коллекторам:

Дмитрий Тенешев «Сделай сам солнечный коллектор из полимеров»
Н. В. Харченко «Индивидуальные солнечные установки»

Целый архив документации по технологии производства селективных покрытий скачивайте тут (ссылка на яндекс.диск)

Источник: /ehome.ironws.com/energiya/solnechnye-kollektory/selektivnoe-pokrytie-svoimi-rukami/

Новые технологии гибких и жидких солнечных батарей

Новые высокие технологии на основе наночастиц позволяют создавать гибкие и жидкие — в виде краски — солнечные батареи, при помощи которых можно покрыть свой дом солнечными батареями, решив проблему обеспечения электроэнергией.

Возможно в скором будущем, обклеив свой дом гибкой пластиковой пленкой или покрыв специальной «солнечной краской» окна и стены свого дома, вы раз и навсегда решите на своем уровне энергетический кризис, превратив его в хай-тек ловушку солнечной энергии.

Использование солнечной энергии в настоящее время пока еще дорогое решение для обеспечения себя энергией. Типовое среднее домовладение требует примерно 25 кв.метров солнечных батарей, стоимость которых равна примерно 15 тысяч долларов и это не считая дорогостоящей установки.

Ученые университета Южной Калифорнии изобрели принципиально новое решение обеспечения солнечной энергией, создав новый тип материалов из нанокристаллов в виде жидких чернил. Этот материал можно нанести на самые различные поверхности, в том числе на пленки, которыми потом можно обклеить на окна и стены дома.

Солнечные нанокристаллы имеют размер около 4-х нанометров, это означает, что на булавочной головке может поместиться 250 миллиардов кристаллов или они могут находиться в жидкой фазе.

Совет

Жидкие чернила с солнечными нанокристаллами можно наносить на поверхности, то есть печатать солнечные батареи, как печатают газеты на гибкой основе.

Такие гибкие нанокристаллические солнечные батареи дешевле в изготовлении, чем монокристаллические кремниевые пластины солнечных батарей, но не столь эффективны в преобразовании солнечной энергии в электрическую.

Ученые решили одну из ключевых проблем гибких солнечных батарей: создали стабильную жидкую среду, которая проводит электричество. При сравнительно низкой температуре процесса, разработанный материал дает возможность «напечатать» солнечные элементы на пластик, вместо стекла, тем самым, сделав солнечные батареи гибкими, что позволить их размещать в любом месте.

Другие научно-исследовательские группы работали над подобными материалами с «квантовыми точками», которые позволяют создавать «солнечные краски», которые поглощают солнечную энергию и проводят электричество.

Краска, содержащая «квантовые точки», создана учеными университета Нотр-Дам и может быть нанесена на любую поверхность для поглощения солнечной энергии и выработке электрической энергии.

Квантовые точки представляют собой наноструктуры размером от двух до десяти нанометров, которые можно смешивать с любым красителем и использовать как обычную краску. Квантовая точка представляет наночастицу оксида титана, покрытую сульфидом кадмия или селенида кадмия.

 Во время испытаний «солнечной краски» она показала одну десятую от эффективности обычных солнечных батарей, но ученые верят, что могут повысить коэффициент преобразования солнечной энергии в электрическую.

В настоящее время технология применения «солнечной краски» на основе квантовых точек совершенствуется. Вероятно в недалеком будущем, взяв эту краску, и покрасив свой дом, мы его превратим в солнечную батарею, которая будет обеспечивать все наши бытовые потребности.

Источник: /newsmake.net/news/novye-texnologii-gibkix-i-zhidkix-solnechnyx-batarej

Селективное покрытие для солнечных коллекторов

Важнейшей частью любого коллектора – плоского, вакуумного, воздушного – является абсорбер. Именно абсорбер преобразует энергию солнечного излучения в энергию тепловую.

В плоских водяных и в воздушных коллекторах абсорбер в общем случае представляет собой металлический лист, покрашенный в черный цвет селективной краской для солнечных коллекторов.

Обратите внимание

Причем в воздушном коллекторе абсорбер может быть выполнен с ребрами для увеличения площади нагреваемой поверхности. В вакуумных коллекторах абсорберы представляют собой тонкие пластины в вакуумных трубках.

В плоских водяных и в вакуумных коллекторах абсорберы передают накопленное тепло теплоносителю. В воздушных коллекторах просто нагревают до высокой температуры воздух, находящийся в коллекторе. Но в любом случае важнейшую роль в процессе нагрева играет покрытие абсорбера.

Черный цвет — черному цвету рознь

Некоторые умельцы наносят селективное покрытие для солнечных коллекторов своими руками, наивно полагая, что, покрасив металлический лист черной краской, они решат все проблемы. Но черная краска бывает разная.

И как эффективно будет работать коллектор, в огромной степени зависит от того, какой именно краской покрыт абсорбер. Дело в том, что черные краски различных составов по-разному реагируют на солнечный свет.

Какая-то часть солнечной энергии поглощается, а какая-то отдается в виде теплового излучения, а результирующая эффективность будет очень низкой.

Так, например, эффективность абсорбера, покрытого обычной черной краской, составляет всего 11%, в то время, как при покрытии другими типами красок эффективность может превышать 90%. Кроме того, обычные черные краски не обладают термостойкостью и при длительном нагревании начинают слоиться, отставать от основы.

Как работают различные покрытия

Читайте также:  Производство сайдинга из древесины: оборудование + технология изготовления 2019

Главных показателей, которые характеризуют ту или иную черную краску для покрытия абсорбера, всего два. Это, во-первых, способность поглощения солнечной энергии и, во-вторых, способность покрытия поверхности к излучению энергии в длинноволновом диапазоне. Чем выше первый показатель и ниже второй, тем эффективнее покрытие.

Так, например, два слоя покрытия «Черный никель» поверх гальванопокрытия из никеля на мягкой стали (согласно технологии деталь была погружена на шесть часов в кипящую воду) показали способность поглощения, равную 0.94. При этом способность излучения составила всего 0.07.

Или «Черный никель», содержащий окиси и сульфиды никеля и цинка, нанесенный на полированный никель, имеет способность поглощения, равную 0.910, при способности излучения 0.11.

Новые составы, новые методы получения высокоэффективных абсорберов

Над поиском составов термостойких красок, способных по максимуму поглощать солнечную энергию, работают многие ученые. В Германии в 1980 году доктор Вольфганг Цезиаль и инженер Густав Кроз получили патент на «Способ получения селективно поглощающих площадей поверхности для солнечных коллекторов и устройство для реализации этого способа».

Их работа получила дальнейшее развитие и была подкреплена патентами, полученными в 1998 и в 2001 годах.

Целью этих и других аналогичных разработок являются, во-первых, достижение высокой степени поглощения, а следовательно, и высокой степени конверсии падающего солнечного света в полезное тепло, а во-вторых, достижение минимальной излучательной способности, то есть низкое тепловое излучение.

Для изготовления высокоэффективных абсорберов с нанесенным покрытием разрабатываются специальные технологии получения селективных красок и методы их нанесения на поверхности абсорберов, которые, к тому же, могут изготавливаться из различных материалов.

К концу девяностых годов прошлого века это были, в основном, гальванически нанесенные слои так называемых «черного хрома» или «черного никеля». При этом были получены достаточно обнадеживающие результаты для указанных покрытий, а именно качество поглощения до 96%, процент излучения около 10%.

Это были очень хорошие показатели.

Разработанные в середине девяностых годов в Германии методы нанесения селективного покрытия использовали процесс вакуумного напыления на основу. Были проведены эксперименты с нанесением на медную основу титаново-оксинитридных, а также керамических покрытий.

Важно

Позднее были проведены эксперименты с алюминиевыми листами. Эти покрытия при контрольных замерах показали значение поглощения солнечного излучения, превышающее 95%, а значение излучательной способности — в пределах от 3% до 5%.

Но, несмотря на такие высокие показатели, которые были получены для «Черного никеля» и «Черного хрома», эти покрытия не нашли применения на европейском рынке, так как при производстве этих напылений происходило довольно заметное загрязнение окружающей среды от использования гальваники в производственном процессе. Та же участь постигла и разработанное в США селективное покрытие «Черный кристалл».

Селективные покрытия в домашних условиях

Прежде чем решиться на самостоятельное нанесение селективного покрытия на абсорбер, нужно тщательно изучить характеристики доступных покрытий и взвесить свои возможности.

Если вас что-то не устраивает, лучше отказаться от этой идеи и купить уже готовые коллекторы. Способов нанесения покрытий достаточно много, но не все они могут подойти.

Например, некоторые умельцы, не вдаваясь в детали, просто покрывают металлический лист обычной черной краской только потому, что эта краска, во-первых, черная, а во-вторых, дешевая.

Но такая краска принесет мало пользы, так как она не термостойкая, а при высыхании становится еще неплохим теплоизолятором. Черная матовая автомобильная краска обладает достаточно неплохим светопоглощением, достигающим 70%. Недостатком этой краски является слабая термостойкость.

Лакокрасочной промышленностью выпускаются черные матовые краски, обладающие повышенной термостойкостью. Такими красками покрывают грили, мангалы, изготавливаемые различными фирмами. Эти краски могут быть как в банках, так и в аэрозольной упаковке.

Предпочтительнее, конечно, краски в аэрозольной упаковке, так как в этом случае можно нанести селективное покрытие, не превышающее нескольких микрон по толщине. При покупке нужно особо обращать внимание на способ нанесения покрытия, так как применение некоторых видов красок требует предварительной обработки поверхности, на которую они будут наноситься.

В некоторых случаях требуется антикоррозийная обработка поверхности, а в некоторых случаях и кислотная грунтовка.

Краска Iliolac

Совет

В настоящее время наибольшей популярностью для нанесения селективного покрытия пользуется краска «Iliolac» («Илиолак») производства греческой компании Stancolac.

Производители утверждают, что эта краска обладает поглощающей способностью, равной 99%.

Краска эта выпускается в баночной фасовке, поэтому для нанесения ее на поверхность абсорбера лучше пользоваться краскопультом, чтобы получить слой не толще пятидесяти микрон.

Селективная пленка в рулонах

И, наконец, для покрытия абсорбера можно использовать селективную пленку. Эта тонкая термостойкая пленка, выпускаемая в рулонах, наклеивается на предварительно обезжиренную и очищенную поверхность абсорбера. Пленка эта представляет собой медную или алюминиевую фольгу с готовым селективным покрытием, нанесенным на нее методом вакуумного напыления.

Особых сложностей в нанесении селективных покрытий нет, и если вы решились сделать солнечные коллекторы своими руками, то добротно выполненное устройство будет работать ничуть не хуже своего промышленного собрата.

Источник: /solarb.ru/selektivnoe-pokrytie-dlya-solnechnykh-kollektorov

Селективная краска для солнечного коллектора

Для чего нужно селективное покрытие для солнечного коллектора? Все дело в том, что селективный слой является самым важным элементом в системе, который отвечает за максимальное поглощение тепла.

А потому, если возникает желание сделать солнечный коллектор своими руками, вам потребуется найти этот химикат или селективную краску чтоб покрасить абсорбер коллектора.

От соблюдения технологии, правильного напыления светопоглощающей краски, отражение солнечных лучей будет минимальным. Это значит что ваш коллектор будет более эффективен.

Обратите внимание

Как правило в домашних условиях, используют селективную краску для солнечных коллекторов ILIOLAC,которая должна наносится на соответствующий грунт.

Обычно покрытие наносят распылителем при давлении воздуха 3-5 bar. После окрашивания через несколько часов с материалом уже можно работать.

Селективная краска это по сути быстросохнущее промышленное покрытие для солнечных коллекторов с очень высокой степью поглощения.

Кроме основных специальных свойств, покрытие хорошо защищает изделие от коррозии, имеет отличную твердость пленки.

Таким образом, приобретая специальную краску, процедуру увеличения КПД солнечного коллектора можно сделать самостоятельно, своими руками.

Некоторые умельцы, делают селективное покрытие на объёмных плоскостях, такими формами они желают задействовать больше углов для попадания солнечных лучей в накопитель.

Селективное покрытия для солнечного коллектора- цена

Многих волнует вопрос: селективная краска для солнечных коллекторов где купить?

Селективное покрытие для солнечных коллекторов можно купить в специализированных магазинах. Так же можно поискать информацию в интернете.

Стоимость селективной краски достаточно приличная, но как правило цена зависит от вашего региона проживания и жадности продавца. К примеру в России, селективную краску для солнечных коллекторов можно купить в пределах 1000 рублей за банку.

В Украине такое покрытие обойдется покупателю примерно в 350 гривен.

На заметку о селективной краске! Естественная окись меди (если у вас медный абсорбер) Cu2O -обладает поглощением 75% и отражением 33%. Значит имеем эффективность 75-33 = 42%.

В 4 раза лучше, чем покраска черной краской.

Получается что сама медь обладает отличной селективностью, поэтому преимущество при изготовлении коллектора для нагрева воды, нужно отдавать именно этому материалу.

Так же существует специальное селективное покрытие с антиконвекционным эффектом. Такой чудо-химикат уменьшает конвективную теплоотдачу.

Такое покрытие требует особой подготовки глянцевой поверхности, чтобы она хорошо отражала солнечные лучи.

Видео как работает солнечный коллектор зимой в -15 мороза.

Источник: /solar-batarei.ru/selektivnaya-kraska-dlya-solnechnogo-kollektora.html

Краска «солнечные батареи»

Всем нам знакомы солнечные батареи, используемые для генерации электричества из солнечных лучей. Теперь же ученые создали краску, которая является альтернативой солнечным батареям.

Сложно себе даже вообразить, что каждый слой краски, наносимый на поверхность дома, может генерировать электрическую энергию, которую можно использовать для питания бытовой техники и оборудования. Реально ли такое?

Ученые из университета Нотр-Дама (англ. University of Notre Dame) сделали значительный шаг навстречу этой, казалось бы, несбыточной идее. Команда исследователей создала «солнечные краски», в состав которых входят полупроводниковые наночастицы, способные генерировать энергию из солнечных лучей.

«Стремление создать нечто трансформативное, идущее впереди существующих технологий получения солнечной энергии, основанных на кремнии, привело нас к разработке над «солнечными красками», — говорит руководитель исследования Прашант Камат, являющийся доктором наук химии и биохимии, а также исследователем центра нанонауки и технологий (NDnano) университета Нотр-Дама.

«Путем добавления наночистиц, генерирующих энергию, так называемых квантовых точек, мы сделали однослойную краску, которая может быть нанесена на любую токопроводящую поверхность, при этом без использования специального оборудования».

Как описывает исследование журнал ACS Nano, команда сосредоточилась на свойствах наноразмерных частиц диоксида титана, покрытием для которых были выбраны сульфид кадмия и селенид кадмия. Чтобы получить пасту частицы погружали в смесь, состоящую из воды и спирта.

После нанесения полученной пасты при помощи щетки на материал с электропроводными свойствами, под действием света генерировалось электричество.

Как объясняет руководитель проекта, КПД от конверсии света в энергию, которую они смогли получить, составило пока что всего 1%, что существенно меньше по сравнению с 10-15% эффективности обычных солнечных батарей на основе кремния.

«Существенное преимущество нашего изобретения состоит в том, что краска может быть произведена в больших количествах, чем батареи, при этом на ее производство уйдет меньше средств», — утверждает Камат. «И если мы сможем повысить ее КПД, хотя бы на немного, то мы смогли бы сделать реальный вклад в удовлетворение спроса на электроэнергию в будущем».

«Именно по этой причине мы назвали новую краску как «подобная солнцу» (англ. Sun-Believable), — добавил он. «Естественно, нашей команде еще необходимо многое сделать, чтобы улучшить ее стабильность и эффективность».

По материалам news.nd.edu.

Источник: /ideibiznesa.org/solnechnae-kraska.html

Ссылка на основную публикацию